
Computer Science Fundamentals Cheat Sheet

Hardware and software fundamentals

Hardware is anything physically connected to a computer.

Central Processing Unit (CPU)
A physical object that takes data from the main memory, processes it, and 
returns the updated data to the main memory.

Control unit (CU)
A subunit of the CPU that controls data flow from and into the main 
memory.

Arithmetic and logic unit (ALU)
Subunit of the CPU that is responsible for processing arithmetic and logic 
operations.

Input units
Take data from the world or an input device and convert it into streams of 
bytes.

Output units
Take processed data from the CPU and render it in a 
human-understandable way.

Storage units
Where data is stored after being retrieved and processed. The physical 
memory space.

Memory
The main memory and RAM (physical spaces in the computer) and 
secondary storage (e.g. hard drives).

Software is a collection of programs and procedures that perform 
tasks on a computer.

Machine language
The only language the computer can process: a stream of ones and zeros 
(binary). A low-level language.
-
Assembly language
A human-readable language that translates binary into assembly 
instruction, which must be translated into machine language for the 
computer. A low-level language.

High-level programming languages
Allow the writing of human-readable programs without large amounts of 
low-level instructions (i.e. assembly language instructions).

Assembler
A utility program that translates an assembly language program into 
machine language.

Compiler
A program that translates human-readable source code into 
machine-readable target code in a low-level language. Once the 
translation is complete, the target code is passed to the target machine 
for execution.

Interpreter
A program that translates human-readable source code into 
machine-readable target code in a low-level language command by 
command while the source code is being executed.

Operating system
Software that supports a computer's basic functions, manages computer 
hardware and software resources, and provides common services for 
computer programs

User applications 
Software written for the end-user that's designed to carry out a task 
unrelated to the operation of the computer system.

Data structure fundamentals 

Data structures: Formats for the organization, management, and 
storage of data that enable efficient access and modification.

Array
A collection of items of the same variable type that are stored sequentially in 
memory. Best suited for retrieving data in a constant time (using index) but 
don't provide fast data insertion or deletion. 

Linked list
A linear sequence of nodes linked together. In a singly linked list, each node 
contains a value and a pointer to the next node in the list. Linked lists provide 
faster data insertion and deletion but slower data retrieval compared to 
arrays. 

Tree
A non-linear data structure often used to represent hierarchical data. 

Stack
A linear structure with last-in, first-out (LIFO) order. Imagine a stack of plates. 
The last plate placed on top of the stack is the first taken out. 

Queue
A linear structure with first-in, first-out (FIFO) order. Imagine lining up for a 
roller coaster. The first people who line up leave the line for the ride first. 

Graph
An abstract notation that represents the connection between all pairs of 
objects.

Hash table
A structure implemented by storing elements in an array and identifying 
them through a key. A hash function takes in a key and returns an index for 
which the value is stored. 

Heap
An advanced tree-based data structure used primarily for sorting and 
implementing priority queues.

Algorithm fundamentals

Algorithm: A series of well-defined instructions that tell a computer 
what to do to solve a problem. Algorithms are applied to data 
structures.

Complexity and correctness concepts

Asymptotic time complexity
A platform- and input-independent analysis that computes the exact running 
time of an algorithm. It tells us how a program performs as the size of input 
grows regardless of the underlying machine. Big O is used to represent the 
upper bound, Big Omega is used to represent the lower bound, and Big 
Theta is used to represent the tight bound of running time.

Time complexity of recursive algorithms
Can be computed using the substitution method, Master's theorem, or 
recursion tree. 

Asymptotic space complexity
An analysis of how much memory an algorithm takes. 
 
Correctness proof techniques
Used to prove that a given algorithm is correct and will always produce the 
intended output. The most common and widely used technique is loop 
invariant, which is based on mathematical induction. 

Design techniques

Brute force
Requires going through all possibilities to find a solution to a problem. The 
least efficient method and one that mostly doesn't provide the desired 
solution in a feasible time. 

Divide and conquer
Breaks a problem into smaller subtasks that are then solved using recursion 
and eventually reassembled. Recursion is the practice in which a function 
calls itself directly or indirectly. Examples include merge sort and quicksort. 

Dynamic programming
Similar to divide and conquer. Divides a big problem into small subtasks and 
combines their solutions. Unlike divide and conquer, a subtask may overlap 
with other subtasks. To reduce running time, results of each subtask are 
saved in memory, a process called memoization. 

Greedy
A solution for each subtask is attempted using the best available local 
solution, called local optima. This approach yields optimal results only when 
local optima leads to the global optima, the best possible global solution.

Other techniques
Approximation algorithms find a near-optimal solution when finding an 
optimal solution is either time-consuming or not feasible. Other techniques 
include randomized algorithms and linear programming. 

Key categories

Sorting and searching algorithms
Put elements of a list in order, or check for or retrieve an element from any 
data structure where it's stored. Sorting examples: mergesort, quicksort, 
bubble sort, selection sort, and insertion sort. Searching examples: linear 
search and binary search.

Graph algorithms
Solve problems of representing graphs as networks. A graph is an abstract 
notation that represents the connection between all pairs of objects.

Shortest path algorithms
Find the shortest path in a graph. Many sorting algorithms exist. An 
algorithm is selected based on the type of data, its size, and the user 
application.


